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Easily accessible ferrocenyl N-P/S type ligands
and their applications in asymmetric allylic substitutions
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Abstract—Easily accessible novel 1,2-disubstituted phosphinamidite-thioether ligands based on a ferrocene motif have been devel-
oped, and successfully applied for asymmetric allylic substitutions with excellent yields and enantioselectivities.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1.
1. Introduction

The transition metal-catalyzed asymmetric allylic substi-
tution has become a powerful tool for enantioselective
carbon–carbon and carbon–heteroatom bond forma-
tion.1 Several classes of chiral ligands, such as bisphos-
phines,1 monodentate phosphines,2 and P/N mixed-
donor ligands3–5 have been extensively studied and pro-
ven to be effective ligands for Pd-catalyzed asymmetric
allylic substitution reactions. In the literature, few re-
ports concern the use of chiral P/S mixed donors for
metal-catalyzed asymmetric reactions6–9 (Fig. 1). Seminal
work by Evans et al. showed that O-P/S mixed-donor
ligands could mediate Rh-catalyzed hydrogenation
reactions and Pd-catalyzed allylic alkylation with
enantioselectivity up to 98% ee.7 Recent works by Car-
retero et al. also revealed that several P/S ligands were
effective for Pd-catalyzed allylic substitution reactions,8

ring opening of oxa- and aza-bicyclic alkenes,9,12 aza
Diels–Alder reactions,10 and 1,3-dipolar cycloaddition
of azomethine ylides.11

Ferrocene-based chiral phosphines have found impor-
tant applications for metal-catalyzed asymmetric reac-
tions.13 Recently, we developed chelating ferrocenyl
phosphine-phosphinites 5, phosphine-phosphoramidites
6, and phosphine-phosphites 7. These have been success-
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fully applied for Rh-catalyzed hydrogenation of dehy-
dro-a-amino acid derivatives to give hydrogenated
product with excellent enantiopurity.14 Further to these
efforts, we herein report that bidendate ferrocenyl phos-
phinamidite-thioether ligands, such as 2, are promising
ligands for asymmetric catalysis. The results of their
application in asymmetric allylic alkylation and amina-
tion will be described.
2. Results and discussion

Scheme 1 depicts the synthetic route for ferrocenyl
phosphinamidite-thioether ligands 2. Starting from the
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Scheme 1. Synthesis of the ferrocenyl N-P/S ligands 2.

Table 2. A study of influence of the thioether group of (S,Rp)-
FerroNPS ligands 2 on Pd-catalyzed AAA reactiona

Entry Ligand Concn
(M)

Time
(min)

Yield
(%)b

ee (%)c

1 2a (R = Et) 0.5 45 97 91.8 (R)
2 2b (R = tBu) 90 94 92.7 (R)
3 2c (R = Ph) 120 94 93.5 (R)

a Reaction conditions: [Pd(g3-C3H5)Cl]2 (2 mol %), ligand 2

(4.2 mol %), dimethyl malonate (3.0 equiv), BSA (3.0 equiv),
Zn(OAc)2 (2.0 mol %), and toluene as solvent at room temperature.

b Isolated yield.
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commercially available chiral Ugi’s amine,15 diastereo-
selective ortho-lithiation using sec-BuLi/Et2O, followed
by quenching with disulfides (R = Et, tBu, Ph) afforded
the 1,2-disubstituted ferrocenyl amines 3a–c in 60–90%
yields.16 Treatment of 3 with Ac2O and methylamine
furnished the ferrocenyl methylamine 4 in >90% yield.
The ferrocenylamine was then converted to the phosphi-
namidite 2 (50–95% yield) by phosphinylation using
Et3N and Ph2PCl.17

When 1,3-diphenyl-2-propenyl acetate (0.5 M solution)
was treated with dimethyl malonate (3 equiv) in toluene
containing LiOAc as an additive (2 mol %), BSA
(3 equiv), [Pd(g3-C3H5)Cl]2 (2 mol %) and (S,Rp)-Ferro-
NPS-Et 2a (4.2 mol %) at room temperature, the alkyl-
ated product was produced in >99% conversion and
87.9% ee based on chiral HPLC analysis (Table 1, entry
1). For the asymmetric substitution of 1,3-diphenyl-2-
propenyl acetate, using NaOAc or KOAc as an additive
Table 1. Pd-catalyzed asymmetric allylic alkylation using (S,Rp)-
FerroNPS-Et 2a as a chiral ligand with an addition of metal acetate
as an additive in various solventsa

Ph Ph

OAc

Ph Ph

CH(CO2Me)2

*
[η3-C3H5PdCl]2, 2a

additive, r.t.

CH2(CO2Me)2, BSA

Entry Additive Solvent Time (h) Conv. (%)b ee (%)c

1 LiOAc THF 12 >99 87.9 (R)
2 NaOAc >99 86.6 (R)
3 KOAc >99 86 (R)
4 Zn(OAc)2 >99 90.2 (R)
5 CH2Cl2 >99 88.6 (R)
6 CH3CN >99 86.1 (R)
7 Toluene >99 91.8 (R)

a Reaction conditions: [Pd(g3-C3H5)Cl]2 (2 mol %), ligand 2

(4.2 mol %), dimethyl malonate (3.0 equiv), BSA (3.0 equiv), additive
(2.0 mol %), and 0.5 M of concentration, room temperature.

b The conversion was determined by 1H NMR analysis of the crude
reaction mixture.

c The % ee value was determined by HPLC on a Chiralpak AD column
(1.0 mL/min, n-Hex/iPrOH = 95:5).
did not result in better enantioselectivity (ca. 86% ee;
entries 2 and 3). Herein, Zn(OAc)2 was found to be the
best additive; up to 90.2% ee was attained for the allylic
substitution reaction (entry 4).

The effect of solvent for the Pd-2a catalyzed allylic sub-
stitution reaction of 1,3-diphenyl-2-propenyl acetate was
also investigated. As shown in Table 1, CH2Cl2 and
CH3CN are effective solvents for the allylic substitution
reaction, and enantioselectivities of 88.6% and 86.1% ee
were observed, respectively (entries 5 and 6). The best
result (91.8% ee) was achieved when toluene was
employed as solvent (entry 7).

Under the optimized reaction conditions: [Pd(g3-
C3H5)Cl]2 (2 mol %); 2 (4.2 mol %), dimethyl malonate
(3.0 equiv), BSA (3.0 equiv), and Zn(OAc)2 (2.0 mol %)
in toluene at room temperature, the effectiveness of
other ferrocenyl phosphinamidites was tested using
1,3-diphenyl-2-propenyl acetate as substrate. Our results
in Table 2 show that 2b and 2c bearing bulky R groups
(tBu and Ph) are effective ligands for the Pd-catalyzed
allylic substitution using diethyl malonate with ca.
93% ee being attained. Apparently, the bulkier thioether
groups would necessitate longer reaction time (up to
120 min) albeit with improved enantioselectivities.
c The % ee value was determined by HPLC on a Chiralpak AD
(1.0 mL/min, n-Hex/iPrOH = 95:5).
Having achieved enantioselective C–C bond formation
using the Pd-2a catalyzed allylic substitution reaction,
we also evaluated the ferrocenyl phosphinamidite
ligands for analogous C–N bond formation. Treatment
of 1,3-diphenyl-2-propenyl acetate (0.25 M) with benzyl-
amine (3 equiv) in ethyl acetate containing [Pd(g3-
C3H5)Cl]2 (2 mol %) and (S,Rp)-FerroNPS-Et 2a
(4.2 mol %) at room temperature, afforded the product
allyl amine in 98% yield and 89.1% ee. Similarly, other
ferrocenyl ligand derivatives 2b and 2c were also found
to effect the allylic amine substitutions with enantio-
selectivities of 91.5% and 81.7% ee, respectively (Table 3).
3. Conclusion

In conclusion, we have successfully developed a new
class of easily accessible ferrocene-based 1,2-disubsti-
tuted phosphinamidite-thioether ligands derived from
Ugi’s amine. These ferrocenyl P/S ligands have been em-
ployed for Pd-catalyzed asymmetric allylic alkylation



Table 3. The results of Pd-catalyzed asymmetric allylic amination
using (S,Rp)-FerroNPS 2 as chiral liganda

Ph Ph

OAc

Ph Ph

NHBn

*
[η3-C3H5PdCl]2, 2

BnNH2, EA, r.t.

Entry Ligand Concn (M) Time (h) Yield (%)b ee (%)c

1 2a 0.25 3.5 98 89.1 (S)
2 2b 0.1 (THF) 48 86 91.5 (S)
3 2c 0.1 75 92 81.7 (S)

a Reaction conditions: [Pd(g3-C3H5)Cl]2 (2 mol %), ligand 2
(4.2 mol %), benzylamine (3.0 equiv), and EA as solvent at room
temperature.

b Isolated yield.
c The % ee value was determined by HPLC on an OJ-H column

(0.4 mL/min, n-Hex/iPrOH = 85:15).
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and amination, and excellent enantioselectivities and
chemical yields were observed. Further investigation of
other catalytic asymmetric reactions with these ferro-
cenyl N-P/S ligands is currently underway.
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